Everything you ever wanted to know about debug
interfaces

Talk @ Fri3d Camp 2022

PoroCYon

Slides: https://pcy.be/fc22
«O0)>» «F)»r « =)r» 4« > Q> 1/40
_ Everything you ever wanted to know about debug interfaces

https://pcy.be/fc22

TOC

Introduction
Arduino and AVR
ESP32

ARM Cortex-M
TI MSP430

Renesas RL78

«O0)>» «F)»r « =)r» 4«

it
v
it

DA 2/40

Whoami

» Demoscener and hardware hacker

» Dumped DSi ARM7 boot ROM and Wii Fit U Meter flash using glitching
» Linux demoscene 4k intro tooling,

«O0)>» «F)»r « =)r» 4« > Q> 3/40

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
00000 00000000 0000000 00000 00000 0000

Wii Fit U Meter

» Similar to Pokéwalker, but different
MCU

» No IR exploit known (<> Pokéwalker)

> VFIl attack inspired by failOverflow on
the PS4 Syscon?

https://failOverflow.com/blog/2018/ps4-syscon/

Everything you ever wanted to know about debug interfaces

https://fail0verflow.com/blog/2018/ps4-syscon/

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
00000 00000000 0000000 00000 00000 0000

Wii Fit U Meter

» Similar to Pokéwalker, but different
MCU

» No IR exploit known (<> Pokéwalker)

> VFIl attack inspired by failOverflow on
the PS4 Syscon?

» Targetting the debug interface!

==

*https://failOverflow.com/blog/2018/ps4-syscon/

Everything you ever wanted to know about debug interfaces

https://fail0verflow.com/blog/2018/ps4-syscon/

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
00000 00000000 0000000 00000 00000 0000

Debug interfaces

» Read/write memory, single-step,
breakpoints, ... on hardware

» Something controlling the CPU,
but not your code??

» Security implications!

source:

https://media.ccc.de/v/rc3-11627-hacking_the_nintendo_game_watch

Everything you ever wanted to know about debug interfaces

https://media.ccc.de/v/rc3-11527-hacking_the_nintendo_game_watch

Debug interfaces

» Can teach you how a
microcontroller actually works

» Often poorly documented, sadly

| Always write 0, same as previous families.

| Always write 0, same as previous families.

Wait signal fo the CPU. Read only.
1= CPU clock stopped - waiting for an operation to
0 = CPU clock not stopped

an;
E

BYTE

Controls the BYTE signal of the CPU used for mem
1 = Byte (8-bit) access
0 = Word (16-bit) access

12

RELEASE_LBYTEO

Release control bits in low byte from JTAG control.

13

RELEASE_LBYTE1

00 = All bits are controlled by JTAG if TCE1is 1
01 = RW (bit 0) and BYT! 1

10 = RW (bit 0)
11 = Reserved

14

INSTR_SEQ_NOO

«O» «F»r «=)» « =)

Instruction sequence number. Read only.

DA 6/40

Debug interfaces

» Creating a CPU: “"black magic”

» Creating a debugger: “extreme ultra evil elite black magic”

«O» «F>r <« < DA 7/40

it
v

| assume you:

» know what a debugger is (or have used one)
» have an idea about what an assembly instruction is

» have a vague idea what Arudino is

» have a very vague concept of digital hardware
(eg. have played Turing Complete)

«Or <« Fr o« > «E» DA 8/40

Introduction Arduino and AVR ESP32 ARM Cortex-M
000000 ©0000000 0000000 00000

What does this button do?

avrty

1EVvoi
2

b
setup() {
/4 put your setup code here, to run once:
pin 2, OUTPUT):
4 gin(9600); while (!Serial) ;
5 }

#define NUM_GLITCH_LOOPS Gxffff

void Toop() {
static char buf[&4];
static volatile uintls t buf2le4l;
volatile uintl6_t a, b = NUM_GLITCH_LOOPS;
volatile uint8 t c:

158 for (c = 0; ¢ = 4; +c) {
b = NUM_GLITCH LOOPS:
for (a = @; a < NUM_GLITCH_LOOPS: ++a)

Everything you ever wanted to know about debug interfaces

TI MSP430
00000

Renesas RL78
0000

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
000000 0®000000 0000000 00000 00000 0000

avrdude

avrtgt.ino.hex:i

Everything you ever wanted to know about debug interfaces

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
000000 08000000 0000000 00000 00000 0000

avrdude

gt.ino.hex:i

» avrdude: does heavy lifting of the actual upload

» From the avrdude documentation:
The Arduino [...] is supported via its own programmer type specification “ar-
duino”. This programmer works for the Arduino Uno Rev3 or any AVR that
runs the Optiboot bootloader.

Everything you ever wanted to know about debug interfaces

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
000000 08000000 0000000 00000 00000 0000

avrdude

gt.ino.hex:i

» avrdude: does heavy lifting of the actual upload

» From the avrdude documentation:
The Arduino [...] is supported via its own programmer type specification “ar-

duino”. This programmer works for the Arduino Uno Rev3 or any AVR that
runs the Optiboot bootloader.

» Optiboot??

Everything you ever wanted to know about debug interfaces

Optiboot
» ‘Bootloader’: small program in flash that loads your Arduino sketch
» But the ATmega328P cannot speak USB directly
«O0)>» «F)>r «E)r» « E)>» = Q> 11/40
_ Everything you ever wanted to know about debug interfaces

https://corzotech.com/en/boards/202-arduino-uno-rev3-with-long-pins-8058333491769.html
https://github.com/arduino/ArduinoCore-avr/tree/master/bootloaders/optiboot
https://github.com/arduino/ArduinoCore-avr/tree/master/firmwares/atmegaxxu2

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
000000 00®00000 0000000 00000 00000 0000

Optiboot
» ‘Bootloader’: small program in flash that loads your Arduino sketch
» But the ATmega328P cannot speak USB directly

USB serial Atmega

PC 328P

image source: https://corzotech.com/en/boards/202-arduino-uno-rev3-with-long-pins-8058333491769.html
https://github.com/arduino/ArduinoCore-avr/tree/master/bootloaders/optiboot

https://github.com/arduino/ArduinoCore-avr/tree/master/firmwares/atmegaxxu2

Everything you ever wanted to know about debug interfaces

https://corzotech.com/en/boards/202-arduino-uno-rev3-with-long-pins-8058333491769.html
https://github.com/arduino/ArduinoCore-avr/tree/master/bootloaders/optiboot
https://github.com/arduino/ArduinoCore-avr/tree/master/firmwares/atmegaxxu2

Is this an answer

No!

How does the bootloader get inside the ATmega328P7

How does the USB<»serial firmware get inside the ATmegal6U27?

«0O0>» «Fr «=)r» « =) = Q> 12/40

Introduction Arduino and AVR

ESP32 ARM Cortex-M
000000 0000e000 0000000 00000
In Circuit Serial Programming 31.8. Serial Downloading 31.8.3.

Both the Flash and EEPROM memory arrays can be |
is pulled to GND. The serial interface consists of pins
RESET is set low, the Programming Enable instructio:
operations can be executed.

» SPI-based protocol

Figure 31:6. Serial Programming and Verify

» Device identification

» Read & write memory

» No debug capability
Arduino-ISP!

image sources: ATmega328P datasheet 42735,

https://arduinoaddiction.blogspot.com/2016/02/program- arduino-nano-via-uno-with-icsp.html,

https://www.e-tinkers.com/2020/03/do-you-know-arduino-spi-and-arduino-spi-library/
Everything you ever wanted to know about debug interfaces

TI MSP430
00000

Serial Programming Instruction Set
This section describes the Instruction §

Instruc

Instruction/t ation

Programming Enable

Table 31-17. Serial Programmi

Chip Erase (Program Memory/EEPRO
Poll RDY/BSY
Load Instructions

--e ICSP Header
In-Circuit Serial
Programming Header
for SPI Communication

MISsOe e VvCC
SCKe e MoOsI
RST® © GND

= =

Renesas RL78
0000

13/40

https://arduinoaddiction.blogspot.com/2016/02/program-arduino-nano-via-uno-with-icsp.html
https://www.e-tinkers.com/2020/03/do-you-know-arduino-spi-and-arduino-spi-library/

Debug?

debugWire
» Single-wire UART
» Simple command set:
command X = do XYZ
» Access to CPU registers & breakpoints

» No official docs, but
reverse-engineered

http://www.ruemohr.org/docs/debugwire.html

Resuming execution

Do 0@ 60
D1 0@ 01
Do 0@ 60

Resuming
Do 00 00
D1 08 01
D2 ii it
Do 00 00
Step Out

Do 0@ 60
Do 0@ 60

X% -- set PC, xx = 40/60 - 41/61 - £
-- set breakpoint (single step in tt
30 -- set PC and GO

from a SW BP

79/59 -- set PC

-- set breakpoint (single step in tt
-- load the instruction replaced by
32 -- set PC and GO

-- D1 isn't used
63/43 -- set PC
30 -- set PC and GO

source: see URL

«O» «F» «

it
a
it
it

DA 14/40

http://www.ruemohr.org/docs/debugwire.html

Introduction Arduino and AVR ESP32 ARM Cortex-M
000000 00000080 0000000 00000

Annoying limitation
» dW < ICSP: can only use one
» Annoying mode switches between the two
» New protocols: Tiny Programming Interface +

(Unified) Program and Debug Interface
» Used in new AVRs (tinyAVR, megaAVR, AVR-Dx)

Everything you ever wanted to know about debug interfaces

TI MSP430 Renesas RL78
00000 0000

» HACKADAY

HOME BLOG HACKADAY.IO TINDIE HACKADAYPRIZE ~SUBMIT ABOUT

WHAT’S THE DEAL WITH ATMEL
AND MICROCHIP?

by: ff

Atmel

@ MICROCHIP

source: Hackaday

New debug protocols

v

TPI: in tinyAVR: clocked serial
PDI: in megaAVR: uses JTAG
» UPDI: in AVR-Dx and tinyAVR: single-wire UART

v

» Use same principle: control complex state machine,
send instructions to access memory (program +
data) and debug stuff

KEY enables features (flashing, debugging, ...)

v

source: DS40002311A ATtiny424 datasheet
» Debug parts undocumented (but partly

reverse-engineered) nccps://aragonmux. github. io/tempest/

= = = = DA™ 16/40

https://dragonmux.github.io/tempest/

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
000000 00000000 0000000 00000 00000 0000

Next target

source: https://github.com/Fri3dCamp/badge-2020

source: https://www.nabto.com/guide-to-iot-esp-32/
= & = E E 9

17/40

Everything you ever wanted to know about debug interfaces

https://github.com/Fri3dCamp/badge-2020
https://www.nabto.com/guide-to-iot-esp-32/

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
000000 00000000 0@00000 00000 00000 0000

ESP32 programming

B B 7 .

. Fri3d Flasher
B Apps & flash
& Settings

Download hieronder een firmwarebestand en klik dan
hier om het te uploaden.

Everything you ever wanted to know about debug interfaces

A bootrom!

First stage bootloader

After SoC reset, PRO CPU will start running immediately, executing reset vector code, while APP
‘CPU will be held in reset. During startup process, PRO CPU does all the initialization. APP CPU
reset is de-asserted in the cz11_start_cpue function of application startup code. Reset vector code

is located in the mask ROM of the ESP32 chip and cannot be modified.

2. For power-on reset, software SOC reset, and watchdog SOC reset: check the pro sTrap_Rec
register if a custom boot mode (such as UART Download Mode) is requested. If this is the case,
this custom loader mode is executed from ROM. Otherwise, proceed with boot as if it was due
to software CPU reset. Consult ESP32 datasheet for a description of SoC boot modes and how
to execute them.

source: https://docs.espressif.com/projects/esp-idf/en/latest/

esp32/api-guides/startup.html

» Bootrom: immutable program running
in CPU

» Uses UART to load program & save
to flash

» < bootloader: this not in flash!

DA™ 19/40

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/startup.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/startup.html

A bootrom!

First stage bootloader

After SoC reset, PRO CPU will start running immediately, executing reset vector code, while APP
‘CPU will be held in reset. During startup process, PRO CPU does all the initialization. APP CPU
reset is de-asserted in the cz11_start_cpue function of application startup code. Reset vector code

is located in the mask ROM of the ESP32 chip and cannot be modified.

2. For power-on reset, software SOC reset, and watchdog SOC reset: check the pro sTrap_Rec
register if a custom boot mode (such as UART Download Mode) is requested. If this is the case,
this custom loader mode is executed from ROM. Otherwise, proceed with boot as if it was due
to software CPU reset. Consult ESP32 datasheet for a description of SoC boot modes and how
to execute them.

source: https://docs.espressif.com/projects/esp-idf/en/latest/

esp32/api-guides/startup.html

» Bootrom: immutable program running
in CPU

» Uses UART to load program & save
to flash

» < bootloader: this not in flash!

» .. can't do debug, but ESP32 has a
debugger!

DA™ 19/40

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/startup.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/startup.html

ESP32 debug

How it Works?

The key software and 1ts that perform ing of ESP32 with OpenOCD
over JTAG (Joint Test Action Group) interface is presented in the diagram below under the
“Debugging With JTAG" label. These include xts p32-elf-gdb 2

OpenOCD on chip debugger, and the JTAG adapter connected to ESP32 target.

)
idf.py build .: o

1

'

i

)

'
1!
Single USB '
connaction on some |

kits)

h
1
1
: 1]
| Espgdb |! | openocp I e | JTAG s
1 debugger H on chip debugger i | adapter l
1 1 1
1 : i '
! ' | I ESP32
I
! ! family
1 chip
! 1
1 1
| A— w] use |
]
: compile / build flash / monitor i ioita s’
1
! I
1 1
1

EC

JTAG debugging - overview diagram

source: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/

» Based on OpenOCD
> Uses JTAG

» Protocol not documented

DA 20/40

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/jtag-debugging/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/jtag-debugging/index.html

ESP32 debug

How it Works?

The key software and 1ts that perform ing of ESP32 with OpenOCD
over JTAG (Joint Test Action Group) interface is presented in the diagram below under the
“Debugging With JTAG" label. These include xts p32-elf-gdb 2

OpenOCD on chip debugger, and the JTAG adapter connected to ESP32 target.

'
1!
Single USB '
connaction on some |

kits)

'

1 1

[Il

[1

i ' i ! i

g ESPgdb | | | OpenoCD i we | JTAG L e

: 1 debugger H on chip debugger i | adapter : l
1 1 1 I

1 1

! i : 1 i ' ESP32

i 1 family

1 1

: : | : chip
! 1 ! e

11| wtpy buia | tool.py I e A]

: : compile / build i flash / monitor i ioita s’

' : i

i : 1 I

I

|
T
i
1
1
1
1
1
_ RSy

JTAG debugging - overview diagram

source: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/

» Based on OpenOCD

> Uses JTAG

» Protocol not documented
» OpenOCD is FOSS...

DA 20/40

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/jtag-debugging/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/jtag-debugging/index.html

1
Creroacrenr
iu

@ €)J
RUNTEST/IDLE SELECTDR.SCAN ((setEcrirscan
¢o o
1
EET) e)
I 1°
I o 1 °
1
EXITLOR EXITLIR
) lu
Creon 9 Cren ¥
P I
0,
D) ETID)
I I
(UPDATE-DR C UPDATER
¢1 |o ¢1 o
¢ l

source: https://commons.wikimedia.org/wiki/File:

JTAG_TAP_Controller_State_Diagram.svg

JTAG

» 4 wires: TMS, TCK, TDI, TDO

» Complex state machine to access two
registers

P> Registers give access to everything

» Some standardization, lots of legacy

«0>» «F>» « E)>» <« > Q> 21/40

https://commons.wikimedia.org/wiki/File:JTAG_TAP_Controller_State_Diagram.svg
https://commons.wikimedia.org/wiki/File:JTAG_TAP_Controller_State_Diagram.svg

JTAG: why?

™S
=

TCK
[

L » Device identification
L L"‘S L » “Boundary scan”

" DEVICE 1 " DEVICE 2 " DEVICE 3
& S I A Flexible: register sizes, instruction
=]

numbers not defined
source: https://commons.wikimedia.org/wiki/File:Jtag_chain.svg Now used mainly for debugglng
instead

«0O0>» «Fr « =)» « > Q™ 22/40

https://commons.wikimedia.org/wiki/File:Jtag_chain.svg

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
000000 00000000 000000e 00000 00000 0000

JTAG on the ESP32

» No docs, but OpenOCD source code
» Xtensa ‘NAR’, ‘TRAX’, and CoreSight
CTI

» ‘NAR’: send single instructions to
CPU, use DDR as data channel

https://github.com/espressif/openocd-esp32

Everything you ever wanted to know about debug interfaces

https://github.com/espressif/openocd-esp32

Introduction

Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
000000 00000000 0000000 @0000 00000 0000
Ever seen these?

ATSAMD, STM32, LPCxx, K32L, RP2040, ...
Everything you ever wanted to know about debug interfaces

sources: Adafruit and Sparkfun product catalogs, https://stm32-base.org/boards/STM32F103C8T6~Blue=Pill.tml

https://stm32-base.org/boards/STM32F103C8T6-Blue-Pill.html

Bootroms

r AN2606
YI Application note
STM32™ microcontroller

system memory boot mode

Introduction

‘The bootloader is stored in the internal boot ROM memory (system memory) of STM32
devices. It is programmed by ST during production. Its main task is to download the
application program to the internal Flash memory through one of the available serial
peripherals (USART, CAN, USB, etc.). A communication protocol is defined for each serial
interface, with a compatible command set and sequences.

The main features of the bootioader are the following:

@ Ituses an embedded serial interface to download the code with a predefined
communication protocol

@ lttransfers and updates the Flash memory code, the data, and the vector table sections

» Many of these have a UART bootrom

» Similar features: read & write flash,
access lock, ...

» Bootrom controls debug
enable/disable = glitch target

DA 25/40

ARM ADI

Arm’ Debug Interface
Architecture Specification

» ARM debug is standardized and

documented!
ADIv5.0 to ADIv5.2

» Many layers: SWD - DP - MEM-AP

«0>» «Fr «=)r» «) Q> 26/40

SWD and the Debug Port

» Half-duplex synchronous serial

» Few registers that give access to access port
» Simple! (+» JTAG)

» Access to MCU memory

» Extra secret registers for device info & debug control

clock " [y Uy Uy L
RnW ACK[0:2]
A — i i L i
= if
t|g 2lelx =
g § 0| A[2:3] 5 gls El1|ofo]|E WDATA[0:31] §
2
. . _ hd ~
Wire driven by: Host Target Host

image source: ARM Debug Interface Architecture Specification v5

o = = DA 27/40

SWD and the Debug Port

» Half-duplex synchronous serial

» Few registers that give access to access port
» Simple! (+» JTAG)
» Access to MCU memory

» Extra secret registers for device info & debug control

Memory Processor
Debug A Memory

F'hv:tliml: > Port P B Access Port |e—aoc=SS | R“"".“g

connection (OP) (MEM-AP) o

Debug Access Port (DAP)

ARM Debug Interface v5 Micraprocessor
core

image source: ARM Debug Interface Architecture Specification v5

<O «Fr o« DA 27/40

> <

MEM-AP

Debug resource

Address Range

Data Watchpoint and Trace

0xE0001000-0xEQ0O1FFF

Breakpoint unit

0xEQ002000-0xEQ0O2ZFFF

SCS

0OxEQOQEDOR-OXE@ROEEFF

System Control Block

0xEQODEDOO-0XEQOOEDSF

Debug Control Block

OxEQOOEDFO-OxEQOOEEFF

ARMv6-M ROM table

0OxEQOFF000-0XEQOFFFFF

source: ARMv6-M Architecture Reference Manual

» Accessed through SWD-DP

» Access to MCU memory
» ROM tables
» Extra registers for debug

«0>» «F>» « E)>» <«

>

DA 28/40

Introduction

Arduino and AVR ESP32 ARM Cortex-M Tl MSP430 Renesas RL78
000000 00000000 0000000 00000 ©0000 0000
PDP-11 in a microcontroller
o0 e Energia_Rocks.ino | Energia 1.6.10E18
Energia_Rocks.ino
1 #define LED RED_LED

3// the setup routine runs once when you press reset
4 void setupQ) {
s 1/

initialize the digital pin as an output
pindode(LED, OUTPUT);

3 // the l0op routine runs over and over again forever:
digitallrite(LED, HIGH); // turn the LED on (HIGH is the voltage level)
000 wait for a se

7/ turn the LED off by making the voltage LOW
/7 wait for a secon

source: https://www.ti.com/tool/MSP-EXP430G2ET
source: https://energia.nu/

Everything you ever wanted to know about debug interfaces

DA 29/40

https://energia.nu/
https://www.ti.com/tool/MSP-EXP430G2ET

Another bootrom

User’s Guide > UART/|2 C

MSP430™ Flash Devices Bootloader (BSL)

X3 TEXAS INSTRUMENTS » Read from flash is password-protected
ABSTRACT » Erase flash on wrong password!
The MSP430™ bootloader (BSL) (formerly known as the bootstrap loader) allows users to communicate with
embedded memory in the MSP430 mi (MCU) during the ing phase, final production, and

in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified
as required. Do not confuse the bootloader with the bootstrap loader programs found in some digital signal
processors (DSPs) that automatically load program code (and data) from external memory to the internal
memory of the DSP.

To use the bootloader, a specific BSL entry sequence must be applied. An added sequence of commands
initiates the desired function. A bootloading session can be exited by continuing operation at a defined user
program address or by the reset condition.

If the device is secured by disabling JTAG, it is still possible to use the BSL. Access to the MSP430 MCU
memory through the BSL is protected against misuse by the BSL password. The BSL password is equal to the
content of the interrupt vector table on the device.

source: https://www.ti.com/lit/pdf/slau319

DA 30/40

https://www.ti.com/lit/pdf/slau319

Another bootrom

User's Guide
MSP430™ Flash Devices Bootloader (BSL)

i3 TEXAS INSTRUMENTS

ABSTRACT
The MSP430™ bootloader (BSL) (formerly known as the bootstrap loader) allows users to communicate with
embedded memory in the MSP430 mi (MCU) during the ing phase, final production, and

in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified
as required. Do not confuse the bootloader with the bootstrap loader programs found in some digital signal
processors (DSPs) that automatically load program code (and data) from external memory to the internal
memory of the DSP.

To use the bootloader, a specific BSL entry sequence must be applied. An added sequence of commands
initiates the desired function. A bootloading session can be exited by continuing operation at a defined user
program address or by the reset condition.

If the device is secured by disabling JTAG, it s still possible to use the BSL. Access to the MSP430 MCU

memory through the BSL is protected against misuse by the BSL password. The BSL password is equal to the

content of the interrupt vector table on the device.

source: https://www.ti.com/lit/pdf/slau319

UART/I2C

Read from flash is password-protected
Erase flash on wrong password!
“authenticated” flag stored in RAM...

Target ‘authenticated’ check for RAM
write command

vvyyyvyy

u]
8]
1
n
it

DA 30/40

https://www.ti.com/lit/pdf/slau319

Introduction Arduino and AVR ESP32
000000 00000000 0000000

Debugger woes

User's Guide

MSP430™ Programming With the JTAG Interface

ABSTRACT
This document describes the functions that are required to erase, program, and verify the memory module of the
MSP430™ flash-based and FRAM-based mi families using the JTAG ication port

- dia TEXAS
¥ INSTRUMENT:

sources: https://www.ti.com/1lit/pdf/slau320,

Everything you ever wanted to know about debug interfaces

ARM Cortex-M TI MSP430
00000 ©00e00

» Every devboard has a debugger
» Documented in a PDF
» ... kinda

Renesas RL78
0000

https://www.ti.com/lit/pdf/slau320
http://www.ti.com/tool/msp-exp430fr5994

Physical layer

TMS captured
as0

TDI captured Target device starts
as

i ¢1 drivingoutfutonTDO > Spy-Bi-Wire: 2-Wire JTAG

SBWTCK —

<7ps fe—

» Time multiplexed

SBWTDIO I

[~ » Extra stuff: TCLK: send clock edges to

TMS Slot TDI Slot
Figure 2-8. Spy-Bi-Wire Timing Diagram

TMS Slot TDI Slot

TDO Slot i C P U

TDO Slot

i e
SBWTCK I
(external clock signal) |
\
t

I n I
+ t +
Strobes

|
oo [T\ T

|
TCLK | latchedat 1in | |
| lastTDIslot | |

source: https://www.ti.com/lit/pdf/slau320

«0>» «F>» « E)>» <«

>

DA™ 32/40

https://www.ti.com/lit/pdf/slau320

Introduction
000000

Debug layer
addr
CPU data
ctl

Arduino and AVR

00000000

EmHdwn<wn OCmmo

ESP32
0000000

memory

peripherals

Everything you ever wanted to know about debug interfaces

ARM Cortex-M TI MSP430 Renesas RL78
00000 0000e 0000

» CPU is connected to outside world
and memory using the system bus

» Debug system: sit between CPU and
bus

» Control addresses, data, and CPU
signals

Introduction
000000

Debug layer
addr
CPU data
ctl

Arduino and AVR

00000000

EmHdwn<wn OCmmo

ESP32
0000000

memory

peripherals

Everything you ever wanted to know about debug interfaces

ARM Cortex-M TI MSP430 Renesas RL78
00000 0000e 0000

» CPU is connected to outside world
and memory using the system bus

» Debug system: sit between CPU and
bus

» Control addresses, data, and CPU
signals

» Very low-level control: detailed but
hard to use

Introduction

Arduino and AVR ESP32 ARM Cortex-M TI MSP430
000000 00000000 0000000 00000 00000
/80, but worse

Renesas RL78
@000

Everything you ever wanted to know about debug interfaces

source: https://www.renesas.com/sites/default/files/r178-g23-64p-fpb-board. jpg

=

https://www.renesas.com/sites/default/files/rl78-g23-64p-fpb-board.jpg

Bootrom time

RENESAS APPLICATION NOTE
RL78 Microcontrollers
RO1AN0815EJ0100
RL78 Microcontrollers (RL78 Protocol A) Rev. 1.00
Nov 7, 2011
P Edition
Introduction

‘This application note is intended for users who understand the functions of the RL78 microcontrollers and
who will use this product to design application system:

‘The purpose of this application note is to help users understand how to develop dedicated flash memory
programmers for rewriting the internal flash memory of the RL78 microcontrollers.

source: https://www.renesas.com/eu/en/document/apn/

» UART bootrom
» Documented in PDF

» No flash read command = need

something better

rl78-microcontrollers-rl178-protocol-programmer-edition-application-note-rev100

«0O)>» «Fr « = Q> 35/40

https://www.renesas.com/eu/en/document/apn/rl78-microcontrollers-rl78-protocol-programmer-edition-application-note-rev100
https://www.renesas.com/eu/en/document/apn/rl78-microcontrollers-rl78-protocol-programmer-edition-application-note-rev100

Reversing the bootrom

Table 1-5. 1-byte Data and Communication Interface of RL78
1-byte Data Communication Interface
3AH Single-wire UART
00H “Two-wire UART

if (toolf_in == Ox3a) {
set_tool_en:

write_volatile_1(REG_TOOLEN,uVara);

tool0 in = read_volatile 1({REG BACDMHO);
write_volatile_1(REG_BACDMHO, tool0 in | Ox10):
1
else {

uVarG = 0x35;
bvarlg = false;

if (toolo_in == 0) goto set_tool_en:
bvarls = tool0_in =< Oxc5;
do {

} while (toolo_in != OxcS);

use_proto_ocd_flag = use_proto_ocd _flag | ©x20;
}

source: https://www.renesas.com/eu/en/document/apn/

» Docs specify entry modes

» Bootrom uses an extra one

> it enables a debugger command set

rl78-microcontrollers-rl78-protocol-programmer-edition-application-note-rev1i00

> DA 36/40

https://www.renesas.com/eu/en/document/apn/rl78-microcontrollers-rl78-protocol-programmer-edition-application-note-rev100
https://www.renesas.com/eu/en/document/apn/rl78-microcontrollers-rl78-protocol-programmer-edition-application-note-rev100

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
000000 00000000 0000000 00000 00000 oooe

Debugger

rl78-debug (Fub » Command set: read & write memory,

execute asm snippet
I Pull req
» Implemented in bootrom, no special

g /rl78.py /<> L hardware!

¥ master ~ 117

» Has “erase on wrong password"
4 husi tial comm .
@ bt cnivusiasti ' feature, but.. not implemented

A 1 contributor > Very haCkab|e and gl'tchable
(workshop Sunday morning: learn how
to hack it yourself!)

source:
https://github.com/failOverflow/r178-debug/blob/master/rl78.py

Everything you ever wanted to know about debug interfaces

https://github.com/fail0verflow/rl78-debug/blob/master/rl78.py

Introduction Arduino and AVR ESP32 ARM Cortex-M TI MSP430 Renesas RL78
000000 00000000 0000000 00000 00000 @000

Only the beginning
» Skipped eg. ARM CTI, MSP430 EEM, instruction tracing, EnergyTrace, ...

» More detail in protection mechanisms

» Other protocols

RISC-V

Nexus (OpenMSP430, AVR32, MPC/SPC, ...)
PIC

STM8 SWIM

MAXQ JTAG

EFM8 C2

VVYyVYVYYVYYVYY

» History (eg. old ARM EmbeddedICE)
» Core«score debug (Nailgun hack!?)

» How to actually implement this
YUnderstanding the Security of ARM Debugging Features, Ning & Zhang

Everything you ever wanted to know about debug interfaces

Conclusion

» Debug systems are interesting

» Many different ways of making one
» Attrative target for hacking

» Need to understand how they work to know the risks

» But companies won't tell you enough to know the risks

«0>» «Fr «=)r» «) Q> 39/40

Questions

Questions?

Fedi/masto: @pcy@icosahedron.website

Mail me at p@pcy.be
pcy on Fri3d Camp Discord

Slides available at https://pcy.be/fc22
“Os <@ < EZHr Er E DAC 40/40
_ Everything you ever wanted to know about debug interfaces

https://pcy.be/fc22

